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The Influence of the Energy Dissipation and

of the Geometry on

Toroidal Resonators

with a Conducting Separating Wall

RUDOLF DEUTSCH

Abstract— An exact solution of the Maxwell equations for the sta-
tionary electromagnetic waves in a toroidal resonator with a separating
wall is obtained. The structure of the fields in the resonator and in the
metallic toroidal wall is described analytically. The dispersion relation is
formulated and the eigenfrequencies, the damping rate and the Q factor of
the resonator are calculated.
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Here we use the quasi-toroidal coordinates p, 8, ¢, which
are related to the Cartesian coordinates by the equations
x=R(l1—-pcos#)cosp, y=R(l—pcosf)sing, and z=
Rpsind with R as major radius of the torus. Z, is a
cylindrical function of the order ». 4, k, and a are
arbitrary constants.

Solution (1) can be used to describe physical phenom-
ena, which can be reduced to the solution of the scalar
Helmholtz equation. Such a phenomenon is, e.g., the
stationary electromagnetic oscillation in a torus. In this
case the introduction of the Hertz vector in a special way
[1] allows the reduction of the whole mathematical prob-
lem to the solution of (2). But the dependence on sin¢/2
implies a periodicity of the field with period 4, which
can be realized in practice with a conducting separating
wall (corresponding to a ¢ = const plane.)

We tried to study the stationary electromagnetic waves
in a torus with a separating wall in a former paper [2].
Here we construct the complete system of independent
Hertz vectors, which can be obtained from the generating
function f(p, 8, ¢) given in (1). Three different classes of
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fields were obtained, but these satisfied only the condition
B,=0 3)

at the conducting toroidal wall (p=p,). For a wall with
conductivity 6= co conditions

E,=Ey=0 4)

must also be satisfied. To satisfy these conditions we must
superpose the fields described in [2]. Studying different
possibilities of superposition we really got only one, which
satisfies all boundary conditions for the fields, and the
field components satisfy exactly the Maxwell equations
for stationary electromagnetic waves in the inner of the
torus. We give in the first part of the paper the solution
resulting from the mentioned superposition and analyze
the structure of the electromagnetic field in the torus. In
the second part we study the influence of finite conductiv-
ity of the walls, where we determine the structure of the
field in the toroidal wall, the damping rate and the Q

< factor of the resonator.

II. THE ELECTROMAGNETIC FIELD OF THE
RESONATORS, IF THE CONDUCTIVITY OF THE WALLS
IS6=00

Through a superposition of the fields resulting from (1)
and described in [2] we get the electromagnetic field
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It is easy to verify by a direct substitution of (5) and (6) in
the Maxwell equations for stationary electromagnetic
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waves
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curl B=;

dive E=0
divB=0 N
that they are satisfied. Here we mention that in (1), (2),
(5), and (6) we used the notation
2p2
2_ €Lw R
k= S ®

with @ as angular frequency. Curl E and divE in quasi-
toroidal coordinates are

(CurlE)p=m{%(l—pcos0)E¢—%(pEB)}
(curlE)o=m{%%—%(l—pcoSg)E¢}
(curlE)¢=RLp{§_(%ﬂ)__:_l;p]
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In (5) and (6) we replaced Z, by the Bessel function J, (the
Neumann function would lead to |E|=o00 and |B|=c0
for p=0).

Using (5) we can integrate the equations for the electric
field lines of the electromagnetic field. We get

p=const and VI1-—pcosd sin%=const. (10)

Therefore the electric field lines are spatial curves which
remain always on the same p=const surface. Their projec-
tions on the #=0 and #== planes are the parabolas
plotted in Fig. 1. In Fig. 2 we plot them in a perspective
view.

At the separating wall a discontinuity exists. This is the
only surface where surface charges appear (on the toroidal
wall E, is always zero.) The charge distribution on the
separating wall is described by the surface charge density

J,
as~__1_(ﬂ~ 11)
1—pcosé

sing.

As can be seen, the surface charge density has a dipolar
structure, and the density oscillation on this surface is a
dipolar oscillation perpendicular to the plane represented
in Fig. 1. One part of the field lines are starting from the
positive region of the separating wall, and remaining
always on the p=const torus they return to the negative
region of the separating wall. The other part of the electric
field lines are closed lines on the p=const surfaces. The
magnetic field has a more complicated three dimensional
structure. The components of the field are given by (6). At
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Fig. 1. Projections of the electric field lines.

Fig. 2. Electric field lines.

the toroidal wall (p=p,) the magnetic field lines are
described by the following equation:

(1 —cos o)ﬂo/l"Po
(1+cos 0)Po/1+Po(1 — ppcOs 0)20%/1-‘93

The magnetic field has a symmetrical structure against the
0=0, 0=a plane. The field lines do not traverse this
plane.

4® _
COS ) C.

III. THE EIGENFREQUENCIES OF THE RESONATOR

WITH VERY GOOD CONDUCTING WALL
‘Solutions (5)-(6) satisfies the boundary conditions (3)
and (4) if

J1(kpo)=0. (12)
Therefore we get the eigenfrequencies
= (13)

w,,=—y .
m To I,m

Here y, ,, are the roots of the Bessel function J; and r, is
the minor radius of the torus,

We can compare formally these cigenfrequencies with
the eigenfrequencies of a cylinder [3]:

R
2 ) ()

for the E modes

for the H modes
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Yim and y;,, are the roots of J(y)=0 and dJ,(y)/dy=0,
respectively. Equation (13) results formally from these
equations for A= oo if we take /=1 by the E modes or
/=0 by the H modes. But at the cylinder we have three
parameters (n, m,/) and by our eigenfrequencies for the
torus we have only the parameter m. This difference is
related to the geometrical properties of the torus. If we
compare the torus with the cylinder, we can see that the
second curvature of the torus reduces the number of the
symmetry planes. In the cylinder all planes #=const con-
tain the axis of the cylinder and are symmetry planes. In
the torus only the #=0, 8= plane is a symmetry plane
containing the toroidal axis. This has as consequence, that
we do not have in our case exact solutions described by
the Bessel function J, with arbitrary » (as in the case of the
cylinder), but only by J;. This solution is given by (5)-(6).
The other solutions could be eventually constructed by a
series development against the functions resulting from (1)
for arbitrary ». Here we restrict our analysis to the modes
described by (5) and (6). At the same time we would like
to emphasize also that the dispersion relation (13) has the
same form as the equivalent relation of paper [2] with the
sole restriction that it can be applied only for the roots
of J.
The fundamental frequency resulting from (13) is
w =3832%.
o

(14)

1V. TuE INFLUENCE OF FINITE CONDUCTIVITY

A. The Q Factor of the Resonator

Here we suppose that the skin depth (8) for the elec-
tromagnetic waves in the metallic wall is much less than
the dimensions of the torus (minor radius). In this case we
can determine the power losses in the cavity in the first
approximation using the well known relation [3]

2

¢ 2
P =——— | |[nxXB|°dS
loss 32‘7720'[.L28 L[ ]

(15)
where p is the magnetic permeability in the resonator, o
the electric conductivity of the wall, § the skin depth and
n the normal vector to the metallic surface. The integra-
tion is extended over the whole surface surrounding the
resonant cavity. The surface of the conducting separating
wall is about p,/47 (<1) times the surface of the torus.
Therefore the dominant effect is the energy dissipation in
the toroidal wall. Taking this into account we get from (6)
and (15)

3epoci42R?
320ud

For the electromagnetic energy

Joz(kpo)- (16)

[y
loss™

L BB+
U= 16wfV(EE +BB*)dV

stored in the cavity from (5) and (6) results

U= jsmpp A*R°J} (kpy)- (17)
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Taking into account, that for the roots of J; we have
Jo(1, m)=—4(¥1,,») and using the definition of the Q
factor, we get

_ W PoR
0= w8 (18)
Here p, is the magnetic permeability of the conducting
wall. So for the geometrical factor of the toroidal resona-
tor with a separating wall we get a2, therefore the same
order of magnitude as for the TM modes in cylindrical
cavities.

B. The Structure of the Field in the Toroidal Wall with
Finite Conductivity and the Corresponding Dispersion
Relation

Here we suppose that only the separating wall is very
thin and of very large conductivity. We suppose that the
toroidal wall has a finite conductivity satisfying the condi-
tion o>>ew/47. In this case we can solve the Maxwell
equations separately for the inside of the cavity and for
the conducting wall, and after that we can impose the
conditions which must be satisfied at the interface of the
two media. The solution for the inside of the toroidal
cavity is identical with (5) and (6). For the conducting
toroidal wall we have to solve the Maxwell equations

curlE=—i-‘£-B
c

470
WHCE

curl B=
diveE=0
divB=0. (19)

The exact solution of this system, which can be coupled at
the interface with (5) and (6) is

E,=0
hi(xp)cose/2
hy(kpy)V1—pcosd

E. = —ge'lmpo)—nxp)) hy(p)sinfsin¢ /2
b

hi(kpe)V1—pcosd

ac e!Imkpo)—m(xp)] h\(kp)(2—3pcos §)

Eo = ge‘lmxro) —m(xke)]

B"=_i2wR
phi(kp) V1—pcost
n?
cos051n2
Ba=_,-2“cR o antepor—mcepy]__(kP)2—pcos )
w.
Phl(“Po)V(l_PC°50)3
o
sin #sin 3
ho(p)sinBsin 2
o{xp)sin@sin
425K pilni(kpo) —no(xp)~/4] 2
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hy(xp)cosfcos kd

B, =i-2E_cilm(xp0)—m(xp)] )
¢ "2wR -
hy(kpo )\/(1—pcosd)
¢
ho(kp)cos =
+ iﬂeilnl(xpo)_ﬂo(xp)—ﬂ/4] 0 2 .
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Here the functions hg, hy,ng,n; are related to the
Hankel functions H through the relations

ho(z)e“i’flo(z)= —_ Hél)(zei3w/4)
hl(z)e_i"l(z)=Hl(1)(zei31r/4).

The functions Ay, #;, 19, and 7, are tabulated in [4]. As
can be seen, the amplitude of the electromagnetic field in
the metallic wall is determined by %, and A,. Both are
decreasing exponentially for large kp. %, and 7, determine
only the phase deviation.

Equations (5), (6), and (20) satisfy the conditions for the
continuity of B,, E,, and E, at the interface if

a=AJ,(kpo). @n

If we take into account that the surface charges and the
surface currents are distributed practically in the region
with the dimensions of the skin depth, at the interface
between the cavity and the conducting wall the quantities
€E,, 1/uBy and 1/pB, must be continuous. The first of
these conditions is automatically satisfied because of E,=
0, and the other two conditions lead to the dispersion
relation

Ji(kpo) _ Be

= hw Mei['lo("Po)—"h("Po)'*'"/“]‘
Jolkpo)

dnony To(rpo)
@)

Here we get the eigenfrequencies and the damping rates
for various conductivities and permeabilities of the wall
and various parameters of the cavity. For a very good
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conducting metallic wall we have
N

<
daop., <1

and we get for the real part of w the values given in (13).
In this case Imw<«Rew and we can develop (22) in a
series in Imw/Re w. We get for the damping rate

2p poR” @)

Here we would like to make a remark: using expressions
(5) and (6) we can construct by superposition of E and B
a vector, which is an exact solution of the equation

curl F=F

corresponding in our case to a force-free magnetic field
with periodicity 47.

V. CONCLUSIONS

Using various superpositions of a finite number of basis
functions (1) for the toroidal field of a resonator with a
separating wall we could find only one field, which satis-
fies exactly all Maxwell equations and all boundary con-
ditions. The structure of the stationary electromagnetic
wave-field differs essentially from the field structures of
the cylindrical cavity. The classification in E or H modes
cannot be used for the symmetry of the described toroidal
mode. The eigenfrequencies of the toroidal resonator with
a separating wall coincide with the eigenfrequencies of the
cylindrical E modes with /=1 and A= 0. The geometrical
factor in the expression of Q is of the same order as for
the TM modes.
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