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The Influence of the Energy Dissipation and
of the Geometry on Toroidal Resonators

with a Conducting Separating Wall

RUDOLF DEUTSCH

Abstruct-An exact solution of the Maxwell equations for the sta-

tionary ekx!tromagnetic wave in a toroidai resonator with a separating

waff is obtafned. The structure of the fields in the resonator and in the

metaffic toroidal wafl is described analytically. The dispersion relation is

fornmfated and the eigenfrequencie% the damping rate and the Q factor of

the resmator are calculated.

I. INTRODUCTION

~ HE FUNCTION

1
f(p, /3,c#D)= ‘Zv(kp)cos(vi9-a)sin+ (1)

~

is an exact solution of the scalar Hehnholtz equation

;P(l–pcoso): +:; (l–pcoso):

P a2f— +k2p(l–pcos8)f=0. (2)
+ l–pcos O @

Here we use the quasi-toroidal coordinates p, /3,O, which

are related to the Cartesian coordinates by the equations ‘

x= R(l–pcos/3)cos@, y= R(l–pcos O)sin@, and z=

Rp sin O with R as major radius of the torus. Z, is a

cylindrical function of the order v. A, k, and a are

arbitrary constants.

Solution (1) can be used to describe physical phenom-

ena, which can be reduced to the solution of the scalar

Helmholtz equation. Such a phenomenon is, e.g., the

stationary electromagnetic oscillation in a torus. In this

case the introduction of the Hertz vector in a special way

[1] allows the reduction of the whole mathematical prob-

lem to the solution of (2). But the dependence on sin @/2

implies a periodicity of the field with period 47r, which

can be realized in practice with a conducting separating

wall (corresponding to a @= const plane.)

We tried to study the stationary electromagnetic waves

in a torus with a separating wall in a former paper [2].

Here we construct the complete system of independent

Hertz vectors, which can be obtained from the generating

function f(p, 0, @) given in (1). Three different classes of
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fields were obtained, but these satisfied only the condition

BP=O (3)

at the conducting toroidal wall (p= PO). For a wall with

conductivity u= co conditions

EG=E@=O (4)

must also be satisfied. To satisfy these conditions we must

superpose the fields described in [2]. Studying different

possibilities of superposition we really got only one, which

satisfies all boundary conditions for the fields, and the

field components satisfy exactly the Maxwell equations

for stationary electromagnetic waves in the inner of the

torus. We give in the first part of the paper the solution

resulting from the mentioned superposition and analyze

the structure of the electromagnetic field in the torus. In

the second part we study the influence of finite conductiv-

ity of the walls, where we determine the structure of the

field in the toroidal wall, the damping rate and the Q

factor of the resonator.

II. THE ELECTROMAGNETIC FIELD OFT=

RESONATORS, IF THE CONDUCTIVITY OF THE WALLS

ISu=CO

Through a superposition of the fields resulting from (1)

and described in [2] we get the electromagnetic field

EP=O

(5)

BP= –i
cA.ll(kp)

(2–3pcos O)cos Osin+

r
2tiRp (l–pCOS@)

CA

(

2H _ (2-pcose)J,
BO=i

)

+sin 9 sin —

2tiR~ 0 p(l–pcose) 2

B+=i
CA

(

J, COS 0
2kJo+

)

@
l–pcoso Cosz”

(6)

2uR~

It is easy to verify by a direct substitution of (5) and (6) in

the Maxwell equations for stationary electromagnetic
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waves

curl E= –i~ll
c

q-l
curl B=i-E

c

divcE=O

div13=0 (7)

that they are satisfied. Here we mention that in (l), (2),

(5), and (6) we used the notation

(8)

Ay
.,’

,/-
,.

.-
,’, -

/-. .
, ,.

,

, ,. .\ ------
. . . .

. ‘., . .
--..‘. -.<

‘.

with u as angular frequency. Curl E and divE in quasi- 1 ‘...
toroidal coordinates are

Fig. 1. Projectionsof the eleetric field lines.

(?(I-PCOS8)E0- ;(PE,)}(curl E)P= ~p(l _~cos8) ao

(

aEp
(curl E)o= —–&-pcosO)Eq ‘

MI-~coSO) w )

(a(pE*) aEp
(curl E)*== ~ ~ - ~ 1
divE=

1

{

a(l–pcose)pEp

Rp(l–pcose) ap

a(l–pcoso)E@ + a(PE+)
+

ae }
— . (9)

a+

In (5) and (6) we replaced Z“ by the Bessel function ~ (the

Neumann function would lead to IE/ = m and IB I= co
for p= O).

Using (5) we can integrate the equations for the electric

field lines of the electromagnetic field. We get

p= const and ~ sin ~ = const. (lo)

Therefore the electric field lines are spatial curves which

remain always on the same p = const surface. Their projec-

tions on the 0= O and 8= m planes are the parabolas

plotted in Fig. 1. In Fig. 2 we plot them in a perspective

view.
At the separating wall a discontinuity exists. This is the

only surface where surface charges appear (on the toroidal

wall EP is always zero.) The charge distribution on the

separating wall is described by the surface charge density

Jl(kp)
uJ- sin /3.

~

(11)

As can be seen, the surface charge density has a dipolar

structure, and the density oscillation on this surface is a

dipolar oscillation perpendicular to the plane represented

in Fig. 1. One part of the field lines are starting from the

positive region of the separating wall, and remaining

always on the p= const torus they return to the negative

region of the separating wall. The other part of the electric

field lines are closed lines on the p = const surfaces. The

magnetic field has a more complicated three dimensional

structure. The components of the field are given by (6). At

Fig. 2. Electric field lines.

the toroidal wall (p= PO) the magnetic

described by the following equation:

field lines are

(1 -case)’”/’-’”
COS44 = c.

(1 +cose)’”/’+’”(l –pocose)Z’:/l-’: 2

The magnetic field has a symmetrical structure against the

8= O, O= w plane. The field lines do not traverse this

plane.

III. Tm EIGBNFREQUHNCIES OF mm RESONATOR

WITH[ VERY GOOD CONDUCTING WM

‘Solutions (5)-(6) satisfies the boundary conditions (3)

and (4) if

Jl(kpo)=O. (12)

Therefore we get the eigenfrequencies

c-
(41m= -y, ~.

r. ‘
(13)

Here yl, ~ are the roots of the Bessel function J1 and r. is
the minor radius of the torus,

We can compare formally these eigenfrequencies with

the eigenfrequencies of a cylinder [3]:
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% and-L are the roots of .L(Y) = O and dJO)/@ = 0,
respectively. Equation (13) results formally from these

equations for h = co if we take 1= 1 by the E modes or

1= O by the H modes. But at the cylinder we have three

parameters (n, m, 1) and by our eigenfrequencies for the

torus we have only the parameter m. This difference is

related to the geometrical properties of the” torus. If we

compare the torus with the cylinder, we can see that the

second curvature of the torus reduces the number of the

symmetry planes. In the cylinder all planes O= const con-

tain the axis of the cylinder and are symmetry planes. In

the torus only the 6= O, O= m plane is a symmetry plane

containing the toroidal axis. This has as consequence, that

we do not have in our case exact solutions described by

the Bessel function JPwith arbitrary v“(as in the case of the

cylinder), but only by JI. This solution is given by (5)–(6).

The other solutions could be eventually constructed by a

series development against the functions resulting from (1)

for arbitrary v. Here we restrict our analysis to the modes

described by (5) and (6). At the same time we would like

to emphasize also that the dispersion relation (13) has the

same form as the equivalent relation of paper [2] with the

sole restriction that it can be applied only for the roots

of Jl .
The fundamental frequency resulting from (13) is

U1=3.832$
r.

(14)

IV. THE INFLUENCE OF FINITE CONDUCTIVITY

A. The Q Factor of the Resonator

Here we suppose that the skin depth (8) for the elec-

tromagnetic waves in the metallic wall is much less than

the dimensions of the torus (minor radius). In this case we

can determine the power losses in the cavity in the first

approximation using the well known relation [3]

where p is the magnetic permeability in the resonator, u

the electric conductivity of the wall, 8 the skin depth and

n the normal vector to the metallic surface. The integra-

tion is extended over the whole surface surrounding the

resonant cavity. The surface of the conducting separating

wall is about pO/4 m (<< 1) times the surface of the torus.

Therefore the dominant effect is the energy dissipation in

the toroidal wall. Taking this into account we get from (6)

and (15)

3cpoc’A’R’ ‘
P-

10ss- 32@3
JO(kpo).

For the electromagnetic energy

(16)

u= ~ j(161r ~
EE* +BB*) dv

stored in the cavity from (5) and (6) results

U= ~rp~A2R3J:(kpO). (17)

Taking into account, that for the roots of JI we have

JO(YI,~ ) = –JAY1, m) and using the definition of the Q
factor, we get

Q_ ~ POR

I-La”
(18)

Here PC is the magnetic permeability of the conducting

wall. So for the geometrical factor of the toroidal resona-

tor with a separating wall we get =2, therefore the same

order of magnitude as for the TM modes in cylindrical

cavities.

B. The Structure of the Field in the Toroidal Wall with
Finite Conduction@ and the Corresponding Dispersion
Relation

Here we suppose that only the separating wall is very

thin and of very large conductivity. We suppose that the

toroidal wall has a finite conductivity satisfying the condi-

tion u>zcu/4~. In this case we can solve the Maxwell

equations separately for the inside of the cavity and for

the conducting wall, and after that we can impose the

conditions which must be satisfied at the interface of the

two media. The solution for the inside of the toroidal

cavity is identical with (5) and (6). For the conducting

toroidal wall we have to solve the Maxwell equations

curl E= –i~.11
c

41TopcE
curl B= —

c

divcE=O

divB=O. (19)

The exact solution of this system, which can be coupled at

the interface with (5) and (6) is

EP=O

E@=~e~t~,(WO)-~I(KP)]
hl(Kp)cos@/2

hl(~po)~

E+= – aeiI~’(K~o)-qlfK~)l
h1(Kp)sin6sin~/2

hl(~po)~

BP=–i~
h1(~p)(2–3pcos8)

ei[m(KPO)-?J1(lcP)l

phl(~po)~

4
. cos e sin —

2

B@= –i~
hl(Kp)(2–pcos8)

ei[m(wo)-m(w)]

T
phl(~po) (l–pCOS@)

+. sin Osin —
2

ho(Kp)sin8sin~
acK ei[Th(KPo)–TkxKP)–7 r/41+i—
tiR

hl(fcpo)~



DEUTSCH: INTLUENCE OF E~RGY DISS~A~ON ~ GEOMETRY ON TOROIDAL RESONATORS 1017

/tl(K~)COSkS:

B+=i& #%( KPO)-m(KP)l

)21( K@/(-

hO(Kf))COS;
aCK i[q,(~po)–qo(.P)-~/41

+i—e
WR

h,(K~O)_

K =R/c (4m7qJC)1/2 (20)

Here the functions hO, hl, TO, ql are related to the

Hankel functions I@ through the relations

hO(z)e-i~O(z)= – @)(ze/s~/4)

hl(Z)e-iq’(’)=If f)(zei3’’/4).

The functions hO, hl, qo, and ql are tabulated in [4]. As

can be seen, the amplitude of the electromagnetic field in

the metallic wall is determined by h ~ and hO. Both are

decreasing exponentially for large Kp. q, and qO determine

only the phase deviation.

Equations (5), (6), and (20) satisfy the conditions for the

continuity of BP, Ee, and E+ at the interface if

a=xl.ll(kpo). (21)

If we take into account that the surface charges and the

surface currents are distributed practically in the region

with the dimensions of the skin depth, at the interface

between the cavity and the conducting wall the quantities

CEP, 1/pBO and 1/pBO must be continuous. The first of

these conditions is automatically satisfied because of EP=

O, and the other two conditions lead to the dispersion

relation

Jl(~Po) = &

r

q.m ‘l(KpO) ei[qo(.po)–q,(.Po) +~/41.

Jo(kpo) P 477u~o ~o(K~o)

(22)

Here we get the eigenfrequencies and the damping rates

for various conductivities and permeabilities of the wall

and various parameters of the cavity. For a very good

conducting metallic wall we have

=<<1
47rapc

and we get for the real part of a the values given in (13).

In this case Im a’<Re u and we can develop (22) in a

series in Im ti/Re u. We get for the damping rate

/.4. (JC$
y= Imti=— —

2p poR -
(23)

Here we would like to make a remark: using expressions

(5) and (6) we can construct by superposition of 1? and ~

a vector, which is an exact solution of the equation

curl F=F

corresponding in our case to a force-free magnetic field

with penodicity 47r.

V. CONCLUSIONS

Using various superpositions of a finite number of basis

functions (1) for the toroidal field of a resonator with a

separating walll we could find only one field, which satis-

fies exactly all Maxwell equations and all boundary con-

ditions. The structure of the statiomuy electromagnetic

wave-field differs essentially from the field structures of

the cylindrical cavity. The classification in E or H modes

cannot be used for the symmetry of the described toroidal

mode. The eigenfrequencies of the toroidal resonator with

a separating wall coincide with the eigenfrequencies of the

cylindrical E modes with l= 1 and h = co. The geometrical

factor in the expression of Q is of the same order as for

the TM modes,
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